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The dynamical scaling hypothesis for the structure factor,Ssqd, in depletion-driven colloidal phase separa-
tion is studied by carrying out Brownian dynamics simulations. A true dynamical scaling is observed for
shallow quenches into the two-phase coexistence region. In such a quench, compact clusters nucleate and grow
with time and there is only one characteristic length scale in the system after an initial transient period. Scaling
is satisfied beyond this initial period. In contrast, deep quenches lead to fractal cluster growth, and the system
is controlled by two characteristic lengths that evolve differently in time[Huang, Oh, and, Sorensen(HOS),
Phys. Rev. E57, 875 (1998)]. True dynamical scaling thus cannot be expected to hold. However, an apparent
scaling for the structure factor is observed over some period of time when these two characteristic length scales
become comparable to each other. We compare our simulation results for the total structure factor to theoretical
predictions by HOS by writing it as a product of cluster-cluster and the averaged single-cluster structure
factors, each with its own characteristic length.
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I. INTRODUCTION

Dynamics of phase separation is the subject of many the-
oretical and experimental investigations in diverse systems
[1–3] such as in binary alloys, liquid mixtures, and polymer
blends. Subsequent evolution of the quenched system is de-
termined by the location of the quench inside the phase dia-
gram. In the classical picture, a spinodal line divides the
phase diagram into two kinds of instabilities that might gov-
ern the dynamical processes: nucleation and spinodal decom-
position. If the system is quenched between the spinodal and
the coexistence lines(nucleation regime), it becomes un-
stable against localized, strong amplitude concentration fluc-
tuations. In this situation, nuclei of the minority phase are
formed. These nuclei evolve with time in the following way:
they grow if their size is larger than a certain critical size,
otherwise they dissolve. In the spinodal decomposition re-
gime, the system is unstable against long wavelength, small
amplitude concentration fluctuations, which generate an in-
terconnected pattern that coarsens with time. Although this
simple picture is of general validity, one can not sharply
separate the two regimes and the spinodal line merely serves
as a guideline to distinguish which process dominates[4,5].

Late stages of the phase separation process can be de-
scribed by a dynamical scaling form with a time-dependent
characteristic length,Rstd. The fundamental assumption of
dynamical scaling is that, in late stages of the process, only
one length scale is relevant. This characteristic length repre-
sents a measure of the typical domain size and increases with
time. A major feature of this description is that the pair cor-
relation functiongsr ,td and the structure factorSsq,td de-
pend on time throughRstd only, that is,

gsr,td = G„r/Rstd… s1d

and

Ssq,td = RstddF„qRstd…, s2d

whered is the dimensionality of the system andG andF are
time-independent universal scaling functions.

Several years ago, small-angle light scattering experi-
ments in moderately dense colloidal solutions[6–9] showed
a dynamical scaling behavior surprisingly similar to that ob-
served in binary mixtures undergoing phase separation. In
particular, the scattered intensity distribution in a concen-
trated colloidal solution shows a pronounced peak at a finite
value of the wave number,qm. Furthermore, the position of
the peak moves to smaller values as the aggregation pro-
ceeds, while the peak intensity increases. In the later stages
of the colloidal aggregation process, the dynamical structure
factor, Ssq,td, is found to scale according to the following
form:

Ssq,td = qm
−DfFsq/qmd, s3d

whereFsxd is a time-independent scaling function, andDf is
the fractal dimension of the colloidal clusters. This scaling
form is characteristic of the physical systems undergoing
phase separation[Eq. (2)], except that,qm

−1 is considered a
characteristic length in the system, and the spatial dimension
d of the system is replaced byDf, the fractal dimension of
the colloidal clusters.

Dynamical scaling of the structure factor in an aggregat-
ing colloidal solution is quite unexpected since colloidal ag-
gregation in these experimental systems is irreversible and
leads to the formation of fractal aggregates, in contrast to the
phase separation processes in binary mixtures. The dynami-
cal evolution of such irreversible colloidal aggregation is
well understood in terms of the diffusion-limited-cluster-
cluster aggregation(DLCA) model [10], where the initial
colloidal monomers execute a Brownian motion until small
clusters are formed, and then the clusters themselves diffuse
and aggregate to form even larger clusters. Thus, it is not
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clear why dynamical scaling with only a single length scale
will be appropriate for colloidal aggregation. In fact, Huang,
Oh, and Sorensen(HOS) [11] have argued that irreversible
colloidal aggregation is characterized bytwo different length
scales,namely the mean cluster radius of gyrationRgstd and
the mean nearest-neighbor cluster-cluster separation distance
Rnnstd. Generally speaking, one can write

Rgstd , tn1 and Rnnstd , tn2, s4d

wheren1 and n2 are the respective growth exponents. HOS
have demonstrated that these two length scales grow with
time with two different temporal exponentssn1Þn2d and
thus, there is no dynamical scaling of the structure factor in
an aggregating colloidal system. This is a direct consequence
of the fractal nature of the clusters with a fractal dimension
smaller than the space dimensionsDf ,dd. HOS have further
concluded that formonodisperse systemsthe total structure
factor Ssq,td may be written as the product of two different
structure factors, each with its own characteristic lengths.
The first component,Sccsq,td, is the cluster-cluster contribu-
tion to the total structure factor, for which the cluster nearest-
neighbor separationRnnstd is the associated characteristic
length. The second component,Sscsq,td, is the contribution
from particles inside a single cluster with the cluster radius
of gyrationRg as its characteristic length. HOS have claimed
that when clusters are compact, as in the case of phase sepa-
ration in a binary mixture, both characteristic lengths evolve
with the same temporal exponentsn1=n2d. Thus, there would
be a single, effective length in the system and dynamical
scaling will be satisfied. But when clusters are fractals, dy-
namical scaling might be satisfied at most over a limited
window of time whenRgstd<Rnnstd, but scaling as a general
principle must break down.

Recent experimental and theoretical efforts show that col-
loidal aggregation can be made reversible by tailoring the
strength and range of interaction between colloidal particles.
As a result, colloidal solutions can display a rich series of
phase transitions between gas, liquid and solid phases
[12,13]. Manipulation of the interaction potential between
colloidal particles can be achieved in several ways. For a
charge stabilized colloidal solution, this can be done by the
addition of salt or surfactant solution of predetermined mo-
larities so that asecondary minimum[14] in the interaction
potential forms. Another way to control the interaction po-
tential between colloidal particles is to induce a depletion
interaction[15,16] by adding a nonadsorbing polymer[17]
(or a different sized colloid[18]) in an otherwise stable col-
loidal solution. A major advantage of the latter systems is
that the strength and range of the depletion interaction can be
easily controlled by varying the polymer concentration and
the length of the added polymer chains.

In a recent Brownian dynamics simulation[19] of a two-
dimensional model of depletion-driven colloids with
Asakura-Oosawa(AO) potential, we have shown that a tran-
sition from dispersed-phase to a coexistence of dispersed-
phase and solid-phase takes place as one increases the depth
of the depletion potential well. Near the transition point, for-
mation of clusters with a round shape is observed. As the

well depth is increased further, one first obtains elongated
clusters and then fractal clusters(with fractal dimensionDf
.1.4) form for deep enough well depths. Our simulations
also show how growth kinetics and resulting cluster size dis-
tributions evolve from the irreversible limit to systems which
come to equilibrium over the simulation time due to frag-
mentation. Depletion-driven colloids, thus provide us with a
unique opportunity to study dynamical scaling of time de-
pendent structure factors in a colloidal system which pro-
ducesboth fractal and compact clusters as a function of the
strength of the depletion potential. Such a study might pro-
vide important insight into the validity and applicability of
dynamical scaling for various cluster morphologies. This is
the motivation behind the current work.

In this paper, we carry out a detailed simulation of the
evolution of the structure factor in depletion-driven colloidal
systems, for both shallow and deep quenches into the two-
phase region. Our results show that true dynamical scaling is
reached in a shallow quench(which produces compact clus-
ters) after an initial transient regime. The scaling of the struc-
ture factor is confirmed by studying various length scales and
by conclusively showing the existence of a single length
scale in the system. In contrast, the apparent structure factor
scaling for a deep quench(which produces long-lived fractal
clusters) is found to be only approximate. Two different
length scales are found in the system which grow with two
different power-law exponents with time. We further study
the origin of the peak in the structure factor in this case and
compare with theoretical predictions of HOS by taking clus-
ter polydispersity into account.

II. NUMERICAL MODEL

We consider a two-dimensional(2D) system of linear size
L=256s containingNm=13 107 colloidal particles of diam-
eters. This sets the monomer area fraction to befv<0.157.
We also sets=1 and thus measure all distances in units ofs.
Periodic boundary conditions are enforced to minimize wall
effects. The equations of motion for the colloidal particles in
our Brownian dynamics simulations[20], read as

rWï = − ¹W Ui − GrWi̇ + WW istd, s5d

whereG is the monomer friction coefficient andWW istd, which
describes the random force acting on each colloidal particle,
is a Gaussian white noise with zero mean and satisfies 2D

fluctuation-dissipation relation:kWW istd ·WW jst8dl=4kBTGdi jdst
− t8d. Hydrodynamic interactions, including lubrication
forces, are ignored in the simulation as they might not be of
predominant importance for a study of colloids interacting
through relatively weak(a few kBT) attractive potentials
[21].

The potentialU acting upon each colloidal particle has a
twofold contribution: the two-body depletion potential of
Asakura-Oosawa[15] sUAOd plus a repulsive hard-core-like
interactionsUhcd given by the following expressions:
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UAOsr ijd
kBT

= 153fP

2z3 Ss1 + zd2r ij −
1

3
r ij

3 −
2s1 + zd3

3
D for r ij , s1 + zd

0 for r ij . s1 + zd
62 s6d

and

Uhcsr ijd
kBT

= r ij
−n. s7d

In Eq. (6), z is the size-ratio between a polymer chain and a
colloidal particle and is set equal toz=0.1 as in previous
work [19,22]. Thus the interaction is quite short ranged and
is cut off at a reduced distance of 1.1.fP is the reservoir
polymer packing fraction which controls the strength of the
depletion interaction in the Asakura-Oosawa model. In the
hard-core-like repulsive interaction given by Eq.(7), we
have setn=36. Exponentsn,36 are reported[23] to lead to
anomalies when a hard-core mimic is required in the poten-
tial. The total pair-potentialU=UAO+Uhc passes through a
minimum valuesUmd which is related tofP. In what follows,
we will characterize the strength of the potential in terms of
the absolute value of the minimum potential depth,uUmu,
instead offP.

We chooseG=0.5, and a time stepDt=0.005 in reduced
units of ssm/Umd1/2 with massm=1. All simulations start
from a random homogeneous initial monomer conformation
and the results for the kinetics are averaged over 10 runs.
The monomer friction coefficientG is related to the bare
diffusion constantD0 asD0,kT/G. This expression for the
diffusion constant would be strictly valid if there were no
interactions among the monomers. Nevertheless, this rela-
tionship suggests that the actual diffusion constant increases
asG is decreased and this may result in a decrease in crystal
nucleation.

III. RESULTS AND DISCUSSION

Transition from a single dispersed-phase to a two-phase
co-existence is observed in our model when the minimum of
the depletion potential,Um is deeper than a critical valueUc.
The monomer area fraction in our simulation is chosen to be
fv<0.157, and two-phase coexistence is observed when
uUmu.Uc<3.13kBT. When uUmu increases, homogeneous
cluster nucleation is observed in the system and, at late
times, large round shaped clusters coexist with a sea of
monomers and some small aggregates[Fig. 1(a)]. As the
inset of Fig. 1(a) shows, colloidal particles are arranged in a
hexagonal packing inside such clusters. By increasinguUmu
further, i.e., deep into the two-phase region, fractal clusters
are obtained at late times[Fig. 1(b)]. Here, the interfacial
tension driven surface reorganization of monomers is almost
frozen and the cluster shape results mainly from random
cluster-cluster collisions as in a traditional diffusion-limited
cluster-cluster aggregation(DLCA) or reaction-limited
cluster-cluster aggregation(RLCA) models. However, even

for this deep well depth, the aggregates show hexagonal
closed-packed crystalline ordering at short length scales[see
the inset of Fig. 1(b)] while displaying ramified fractal nature
at larger length scales. In the present work,uUmu=3.5 (corre-
sponding tofp=0.241) (shallow quench) anduUmu=6.0 (cor-
responding tofp=0.333) (deep quench) are selected as rep-
resentative examples for the study of structure factor scaling
in systems displaying compact and fractal clusters, respec-
tively. The phase diagram for the model considered here is
known accurately in three dimensions[24,25], but not in two
dimensions. For this reason, a quantitative identification of
the quench points chosen in our work on the 2D phase dia-
gram is not possible.

A. General features of the structure factor

The structure factorSsqW ,td for a system ofNm monomer
particles is defined as

FIG. 1. Cluster morphology att=10000 for (a) shallow suUmu
=3.5d and (b) deepsuUmu=6.0d quenches into the two-phase gas-
solid region. Insets show hexagonal crystalline packing of the col-
loids inside the clusters.
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SsqW,td = o
i

Nm

o
j

Nm

expfiqW · srWi − rW jdg. s8d

The pair-correlation functiongsrW ,td can be obtained from the
inverse Fourier transform ofSsqW ,td. In order to compute the
above quantities we have discretized the system into aL
3L grid of lattice points. We have then calculated the circu-
larly averaged quantitiesSsq,td andgsr ,td by using standard
fast Fourier transform(FFT) routines.

Figures 2(a) and 2(b) show time-dependent structure fac-
tors for shallowsuUmu=3.5d and deep quenchessuUmu=6.0d,
respectively. The computed structure factors have been nor-
malized by a factorL2, whereL=256 is the linear size of
system. In each case, we observe a peak in the structure
factor. The position of the peak moves to smallerq-values as
time progresses, and the intensity of the peak increases. In
contrast, at short length scales(largeq-values), the structure
factor does not evolve much at late times. For this reason, the
scaling behavior of the structure factors must be examined
carefully over appropriateq-values.

For the case ofuUmu=6.0, the overlapping ofSsqd data for
large q-values at different times is clearly noticeable. This
almost frozen structure at short length scales is directly re-
lated to the way in which clusters aggregate after the initial
transient time[19]. After an initial period, the small clusters
present in the system do not go through any large change of
shape or internal rearrangement due to the strong interaction
potential. Then, clusters start to collide among themselves

and stick in a way similar to the DLCA model without much
internal rearrangements. Therefore the main changes in the
system should occur at length scales larger than the former
cluster size at that time. As the clusters aggregate and in-
crease their size, the overlap ofSsq,td is expected to start at
smallerq-values.

Figure 3 shows log-log plots of the structure factors. Po-
rod regime ofSsqd,q−sd+1d is observed in the case ofuUmu
=3.5 for largeq-values. For deep quenched systems,uUmu
=6, the fractal nature of the clusters(with Df <1.4) exhibit a
power law regime at intermediateq-values,Ssqd,q−Df. With
uUmu=6, we also observe a Porod’s regime for largerq val-
ues, originating from the short-range crystalline packing of
the monomers.

B. Scaling of the structure factor and various length scales
in the system

1. Growth of compact clusters

The time evolution of the structure factor can be charac-
terized by using the standard scaling ansatz, Eq.(2). Several
quantities can be proposed as representative characteristic
length scales of the system: the average cluster radius of
gyration Rgstd, the cluster-cluster nearest-neighbor distance

FIG. 2. Structure factors at several times for(a) shallow uUmu
=3.5 and(b) deep quenched systemsuUmu=6.

FIG. 3. Log-log plot of the structure factors at several times for
uUmu=3.5 anduUmu=6.0. Dashed and dotted lines have been added
to guide the eye in the different regimes at largeq-values. Dashed
lines account for the Porod regimeSsqd,q−sd+1d sd=2d, and the
dotted line accounts for the intermediate regime predicted for
fractal clustersSsqd,q−DfsDf =1.4d.
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Rnnstd, the first zeroR0std of the connected partof the pair-
correlation function(a measure commonly used in numerical
studies of phase separation in binary mixtures[26]), and the
inverse of the location of the peak of the structure factor,
qm

−1std. In order to distinguish the growing clusters from the
background sea of monomers and small clusters, our calcu-
lations of Rnnstd and Rgstd are carried out considering only
clusters of size.4.

Figures 4(a)–4(c) show scaling plots for time-dependent
structure factors for shallow quenched systemssuUmu=3.5d
using Rg, R0 and sqmd−1 as characteristic length scales, re-
spectively. The three scaling plots show the same trend: after
an initial transient period,ti ,103−23103, the data scale
nicely onto a master curve. As shown on Fig. 4(c), the shape
of the scaling function agrees quite well with the form pre-
dicted by Furukawa[27] for shallow quenches.

Since scaling seems to work well at late times with vari-
ous representations of the characteristic length scale, one
might conclude that a single effective length scale must exist
in the system for the growth of compact clusters. Still a
detailed look at the evolution of various length scales is im-
portant for a stringent test of the scaling behavior. We must
add that we do not expect any deviation from scaling for the
evolution of compact clusters at late times, but characteriza-
tion of the various length scales for this relatively simpler
system will provide insight into a more complicated case
analyzed later.

In order to make sure of the existence of a single, char-
acteristic length scale in the system, we have plotted in Fig.
5 the temporal evolution of severalratios of various length
scales mentioned previously. The behavior of these various
ratios is similar in all cases: after the initial transient period
ti, all the length scales in the system evolve in a similar way,
and are proportional to each other. In addition, Fig. 6 shows
individual temporal evolution ofRnnstd andRgstd in a log-log
plot where only clusters of size.4 are considered. At late
times, both quantities are observed to evolve with the same
power law exponent[see Eq.(4)], with n1=n2<0.25. A
power-law exponent of14 indicates that cluster growth at
these times is dominated by collisions among large clusters
and a corresponding reduction in the interfacial energy by
surface diffusion[1].

Now we would like to understand the origin of the break-
down of scalingat earlier timesfor compact cluster growth.
To understand this we need to look at the temporal evolution
of Rg and Rnn carefully. From Fig. 6, we note that at very
early times,t, t1<300, Rg grows very slowly. In the next
stage, t. t1, cluster growth is very fast. This enhanced
growth rate lasts up to a second characteristic timet2
<1000 after which a power-law growth ofRg with an expo-
nentn1.0.25 is observed. Similarly, three different regimes
seem to exist for the growth of the nearest-neighbor cluster
distance,Rnn. For t, t1, Rnn actuallydecreasesbefore reach-
ing a plateau. Fort1, t, t2, Rnn grows very fast and then,
beyondt2, a power-law growth ofRnn with an exponentn2
.0.25 is observed. It is in this later time regime,t. t2 (i.e.,
the initial transient timeti < t2) that the system shows scaling
behavior with a single, characteristic length scale.

The three regimes observed in Fig. 6 can be explained as
follows. During the first staget, t1, cluster nuclei are

formed, and during this initiation period, the mean radius of
gyration of clusters remains approximately constant. This
value ofRg is expected to be close to the mean critical nucle-
ation radius. During this period, the formation of nuclei leads
to a decrease of the mean distance between clusters. This is
clearly demonstrated in the observed decrease ofRnn at this
early stage. Thus, the first regimet, t1 can be identified as a
nucleation period in which nucleation of small aggregates
takes place. Given the different behavior ofRg andRnn in this

FIG. 4. Scaling plots of the structure factor foruUmu=3.5. Char-
acteristic lengths used are(a) the mean cluster gyration radiusRg,
(b) the first zero of the connected part of the correlation functionR0,
and (c) the inverse of the peak positionqm of the structure factor.
Filled symbols are used for times at which scaling holds. In(c) the
solid line is the scaling form predicted by Furukawa[27] for shal-
low quenches.
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first stage, no scaling with a single length scale is possible.
By plotting the total mass of the small clusters(of size

,5) versus time, we find that the characteristic timet2 of the
second stage coincides with the time when the total mass of
the population of single particles and small aggregates(i.e.,
clusters containing less than 5 particles) reaches a steady
state. This simulation result suggests that beyond this timet2,
the net flux of small aggregates becomes zero, i.e., the num-
ber of small aggregates entering large clusters equals the
number of small aggregates leaving large clusters. Thus, for
t. t2, the predominant mechanism of cluster growth is due to
collision among large clusters and a subsequent reduction of
the total interfacial energy as surface area minimizes. On the
other hand, at least two different mechanisms contribute to
the cluster growth in the intermediate regimet1, t, t2. It is
easy to show that the mechanism of collision among large
clusters leads to the same growth law exponent forRg and
Rnn if the clusters are assumed to be compact: the free space
that surrounds the new cluster after the collision grows lin-

early with the new size of the cluster. In contrast, a growth
mechanism based on a net flux of single particles and small
aggregates towards the large clusters leads to a different tem-
poral evolution ofRnn andRg. This is due to the fact that the
distance between the center of masses of the large clusters
remains constant on average, but the radius of gyration
grows due to the incorporation of new particles. Therefore,
when both growth mechanisms are present in the system as
in the intermediate staget1, t, t2, dynamical scaling cannot
be expected, even for compact clusters, asRnn andRg would
evolve differently in time. Only beyond a characteristic time
t2, when the the net flux of small aggregates becomes zero,
the evolution ofRnn and Rg becomes proportional to each
other and dynamical scaling of the structure factor holds.

2. Growth of fractal clusters

The scaling behavior of the structure factor for a deep
quench into the two-phase region,uUmu=6.0, is showed in
Figs. 7(a)–7(c) with Rg, R0, andqm

−1 being used as measures
of the characteristic length scale of the system, respectively.
For fractal aggregates, the spatial dimensiond in the scaling
form [Eq. (2)] is replaced by the fractal dimensionDf; such
a form has been expressed in Eq.(3). We note that a scaling
description is meaningful only for intermediate values ofq
since at small length scales(largeq-values) an almost frozen
hexagonally-packed crystal structure is observed and the
structure factor does not evolve much for largeq-values at
late times[see Fig. 2(b)]. At late times, data for intermediate
values of q seems to fall on a master curve indicating a
dynamical scaling behavior. Scaling seems to be particularly
good whenR0, and qm

−1 are used as characteristic length
scales. Such a scaling behavior was observed previously in
2D aggregation of polystyrene colloids[8] and in numerical
simulations of the DLCA model[28]. However, as we
present shortly, a detailed study of the various length scales
in the system suggests that this apparent scaling of the struc-
ture factor is not a signature of dynamical scaling in a strict
sense.

In Fig. 8 we show the evolution ofRg andRnn versus time
t in a log-log plot. It is clear that these two length scales
evolve differently in time with growth exponentsn1
=0.52±0.03 andn2=0.36±0.03, defined in Eq.(4). How
does one understand these values of the growth exponents?

As mentioned before and illustrated in Ref.[19], the in-
terfacial tension driven surface reorganization of monomers
is almost frozen for deep quenches, and the cluster shape
results mainly from random cluster-cluster collisions as in a
traditional DLCA model. Then, scaling arguments of Refs.
[29,30] for the DLCA model should be applicable here. For
DLCA model with a Brownian coagulation kernel one finds
that the homogeneity constant,l, of the aggregation kernel is
given byl=sd−3d /Df in the dilute limit.The kinetic expo-
nentz, which describes how the mean cluster sizesstd scales
with time t, is in turn related tol :z=1/s1−ld. In 3D, this
providesl=0 andz=1 as expected[31]. In 2D, however,
this leads tol=−1/Df =−0.7 with Df =1.4 and hencez
=0.59 in the dilute limit. However, it is known that the ki-
netic exponentz increases as the system gets dense[29], i.e.,
as thevolume fraction occupied by the clusters, fv

c, increases.

FIG. 5. A comparison of the temporal evolution of various ratios
of possible characteristic lengths:Rg, Rnn, R0, and sqmd−1 for uUmu
=3.5.

FIG. 6. The temporal evolution ofRg and Rnn for uUmu=3.5.
After an initial transient periodti ,103−23103, both length mea-
sures evolve closely in time as,t0.25. A line of slope 0.25 has been
included to guide the eye.
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For an intermediate value offv
cs0.1, fv

c,1d, scaling argu-
ments yieldz.1.28 in 3D andz.0.67 in 2D. Simulations of
the AO model[19] yield a z-value rather similar to the 2D
scaling result in the intermediate regime mentioned above
and also to the kinetic exponent obtained in large-scale 2D

DLCA simulations with a fair degree of cluster crowdedness
[32].

The kinetic exponentz is related to the growth exponent
n1 for the temporal evolution of the mean cluster radius of
gyration,Rg. In the scaling description of DLCA,n1=z/Df.
Following Ref. [19] if we considerz=0.74 andDf =1.4 in
2D, we obtainn1=0.53 in excellent agreement with the ob-
servation of Fig. 8. On the other hand,Rnn scales asNc

−1/d

whereNc is the number of clusters at timet. Since the total
number of monomers is constant in the system, one can write
Rnn,s1/d where s is the mean cluster size at timet. As s
, tz, one obtainsRnn, tz/d. Thus,n2=z/d=0.37 in 2D, again
in good agreement with the value obtained in Fig. 8.

Sincen1Þn2, it is clear that a single characteristic length
does not exist in the system. This is a consequence of the
fractal nature of the clusters[11]. The breakdown of scaling
is further demonstrated in Fig. 9 by plottingratios of various
length scales in the system. As expected,Rg/Rnn is not a

FIG. 7. Scaling plots of the structure factor foruUmu=6.0. Char-
acteristic lengths used are(a) the mean cluster gyration radiusRg,
(b) the first zero of the connected part of the correlation functionR0,
and (c) the inverse of the peak positionqm of the structure factor.
Fractal dimension is set toDf =1.4.

FIG. 8. The temporal evolution ofRg andRnn for uUmu=6.0. For
deep quenched systems, the evolution ofRg and Rnn is different
with time. A solid line of slope 0.36 and a dashed line of slope 0.52
have been included to guide the eye.

FIG. 9. A comparison of the temporal evolution of various ratios
of possible characteristic lengths:Rg, Rnn, R0, and sqmd−1 for uUmu
=6. Dashed and dotted lines are guides to the eye with slopes −0.25
and 0.16, respectively.
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constant in time but rather grows with an exponent given by
n1−n2=0.16. Similarly, the ratioR0/Rg shows clear time de-
pendence. It is interesting to note that bothqm

−1/Rnn and
R0/Rnn show weak dependence ont. This indicates that, both
qm

−1 and R0 are closely related to one of the characteristic
length scale of the system, namely,Rnn. We will address this
point further in the next section.

Now that we clearly demonstrate the existence of more
than one length scale in the system, why does the structure
factor shows scaling as illustrated in Fig. 7? Note that, as
shown in Fig. 8, the two length scalesRg andRnn approach
each other as time progresses. Since their ratioRnn/Rg grows
weakly with timet, the relative difference between these two
length scales tend to decrease as time increases. This opens
up a window in time where these two length scales are of
similar magnitude, and scaling over this limited time interval
seems to satisfy. Dynamical scaling as a general principle
fails though for the growth of fractal clusters.

C. Origin of the peak in the structure factor

HOS has explained the presence of a peak in the structure
factor by writing the total structure factor formonodisperse
systems as a combination of two structure factors: the single-
cluster structure factorSsc, which involves the cluster radius
of gyration Rg as the characteristic length, and the cluster-
cluster structure factorScc, which involves the mean nearest-
neighbor distanceRnn as the characteristic length. In moder-
ately dense systems, this product causes a peak in the
structure factor but the peak location does not represent a
true length scale of the system.qm

−1 is thus not an indepen-
dent characteristic length scale, but rather can be expressed
as a linear combination ofRg andRnn.

Figure 10 shows the comparison of the total structure fac-

tor with the productScc3Ssc for deep quenches att=5000.
The inset of Fig. 10 showsScc andSsc separately in a log-log
plot. The cluster-cluster structure factorScc, has been com-
puted by considering the centers of mass of the clusters as
scattering points. The single cluster structure factorSsc has
been obtained by computing the individual cluster structure
factors and averaging over all clusters. As it is shown in Fig.
10, the productScc3Ssc is a reasonably good approximation
for the total structure factor for largeq-values. The inset of
Fig. 10 shows the two power-law regimes forSsc: a regime in
which Sscsqd,q−Df and at largerq-values, a regime in which
Sscsqd,q−sd+1d according to Porod’s law, originating from
the short-range crystalline order in the aggregates.Scc on the
other hand, flattens out at aq value around 4.5Rnn

−1, in good
agreement with HOS.

Unfortunately, the measured value ofScc3Ssc does not
reproduce the observed peak in the total structure factor from
the simulation. Instead, this product shows a monotonically
decreasing function. One possible reason for this disagree-
ment atsmall q-values is thepolydispersityof the cluster size
distribution for deep quenches. In shallow quenched systems
suUmu=3.5d, however, one finds large clusters with a relative
small degree of polydispersity if we do not take into account
the very small aggregates and single colloidal particles that
surround the large clusters. Therefore,uUmu=3.5 quenches
seem to be a more suitable system for testing HOS predic-
tions applicable for monodisperse systems. Figure 11 shows
a comparison of the total structure factor foruUmu=3.5 at t
=5000 with the productScc3Ssc where only clusters larger
than N.30 are taken into account. The inset of Fig. 11
shows the behavior ofScc and Ssc in this case. The dashed
line shows the predicted Porod regime forSsc in the case of
compact clusters:Sscsqd,q−sd+1d. Scc again flattens out at aq
value around 4.5Rnn

−1, in good agreement with HOS. In this
case, we observe that the productScc3Ssc reproduces the

FIG. 10. The structure factor obtained foruUmu=6.0 at timet
=5000 is compared with HOS predictionS=Scc3Ssc. The inset
depicts the behavior ofScc andSsc separately in log-log plots. In the
inset two lines are plotted to guide the eye forSsc: dashed line
stands for a slope equal to −sd+1d=−3, and solid line stands for a
slope equal to −Df =−1.4. Scc flattens out at aq value around
4.5Rnn

−1.

FIG. 11. The structure factor obtained foruUmu=3.5 at timet
=5000 is compared with HOS predictionS=Scc3Ssc where only
clusters larger thanN.30 have been taken into account for the
calculation ofScc andSsc. The inset depicts the behavior ofScc and
Ssc separately. A dashed line with a slope equal to −sd+1d=−3 is
shown to guide the eye.Scc flattens out at aq value around 4.5Rnn

−1.
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peak of the total structure factor. Thus it quite possible that
the absence of the peak in the productScc3Ssc for uUmu=6 is
due to the polydispersity in the cluster size.

In our simulations for both shallow and deep quenches,
the peak positionqm

−1 is found to be closely related to the
nearest neighbor cluster-cluster separationRnn. For compact
cluster growth, there is only one length scale in the system
and thusqm

−1 can also be expressed in terms of the mean
radius of gyration of the growing clusters. For fractal cluster
growth, there are two independent length scales but over the
simulation time,qm

−1 is found to be proportional toRnn.

IV. CONCLUDING REMARKS

An important result of this work is the demonstration that
aggregating colloids exhibit a true structure factor scaling
only when the growing clusters are compact. This can be
achieved for shallow quenches into the two-phase region of a
depletion-driven colloid. For such quenches, true scaling oc-
curs after an initial transient time. This transient period cov-
ers nucleation of clusters and growth mainly by incorporat-
ing monomers and small clusters in the growing nuclei. In
this regime,Rnn andRg grow differently with time and scal-
ing does not work. After the transient period, the predomi-
nant mechanism of cluster growth is collision among large
clusters and the subsequent surface reorganization of clusters
to reduce interfacial tension. This process leads to a similar
temporal evolution ofRnn and Rg, and a single length scale
can be observed in the system. Dynamical scaling is thus
satisfied.

For deep quenches, the magnitude of the interaction po-
tential between colloidal particles is much larger than ther-
mal energykBT. Thus, both rearrangement and fragmentation
of clusters are practically frozen and the growing clusters are
fractals over long periods of time. Simulation results show
that cluster growth in this regime is controlled by two char-
acteristic lengthsRnn and Rg that evolve differently with
time. True dynamical scaling is thus not possible although an
apparent scaling of the structure factor is observed when
these two length scales are comparable in magnitude.

Another important result of this work is to understand the
shape of the total structure factor. In this respect, our results
are compared with the predictions of HOS. HOS predict that
the total structure factor for a monodisperse system can be
described as a product of the cluster-cluster and the
averaged-single-cluster structure factors, each with its own
characteristic length. In the HOS formulation, the peak in the
total structure factor then arises due to the overlap of these
two contributions. Simulation results show that this descrip-
tion works for monodisperse systems but seems to break
down for polydisperse cluster size distributions.

Much of the simulation results presented here are ame-
nable to direct experimental tests. We hope that our work
would stimulate further experimental and theoretical studies
towards the full understanding of the aggregation processes
in widely different physical situations.
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