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The dynamical scaling hypothesis for the structure facar), in depletion-driven colloidal phase separa-
tion is studied by carrying out Brownian dynamics simulations. A true dynamical scaling is observed for
shallow quenches into the two-phase coexistence region. In such a quench, compact clusters nucleate and grow
with time and there is only one characteristic length scale in the system after an initial transient period. Scaling
is satisfied beyond this initial period. In contrast, deep quenches lead to fractal cluster growth, and the system
is controlled by two characteristic lengths that evolve differently in tlideang, Oh, and, Sorens¢HOS),
Phys. Rev. E57, 875(1998]. True dynamical scaling thus cannot be expected to hold. However, an apparent
scaling for the structure factor is observed over some period of time when these two characteristic length scales
become comparable to each other. We compare our simulation results for the total structure factor to theoretical
predictions by HOS by writing it as a product of cluster-cluster and the averaged single-cluster structure
factors, each with its own characteristic length.
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I. INTRODUCTION S(q,t) = ROF(QR()), (2

Dynamics of phase separation is the subject of many thewhered is the dimensionality of the system adandF are
oretical and experimental investigations in diverse systemsme-independent universal scaling functions.
[1-3] such as in binary alloys, liquid mixtures, and polymer Several years ago, small-angle light scattering experi-
blends. Subsequent evolution of the quenched system is derents in moderately dense colloidal solutigfs9 showed
termined by the location of the quench inside the phase diaa dynamical scaling behavior surprisingly similar to that ob-
gram. In the classical picture, a spinodal line divides theserved in binary mixtures undergoing phase separation. In
phase diagram into two kinds of instabilities that might gov-particular, the scattered intensity distribution in a concen-
ern the dynamical processes: nucleation and spinodal decortrated colloidal solution shows a pronounced peak at a finite
position. If the system is quenched between the spinodal angalue of the wave numbeg,, Furthermore, the position of
the coexistence linegnucleation regimg it becomes un- the peak moves to smaller values as the aggregation pro-
stable against localized, strong amplitude concentration flucceeds, while the peak intensity increases. In the later stages
tuations. In this situation, nuclei of the minority phase areof the colloidal aggregation process, the dynamical structure
formed. These nuclei evolve with time in the following way: factor, S(q,t), is found to scale according to the following
they grow if their size is larger than a certain critical size,form:
otherwise they dissolve. In the spinodal decomposition re- 5
gime, the system is unstable against long wavelength, small S(a,t) = oy "F(A ), )
amplitude concentration fluctuations, which generate an in
terconnected pattern that coarsens with time. Although thi
simple picture is of general validity, one can not sharpl
separate the two regimes and the spinodal line merely ser
as a guideline to distinguish which process domin§es].

Late stages of the phase separation process can be
scribed by a dynamical scaling form with a time-dependen

characteristic lengthR(t). The fundamental assumption of Dynamical scaling of the structure factor in an aggregat-

dynamical scalmg is that, in Iatg stages of Fh? Process, On%g colloidal solution is quite unexpected since colloidal ag-
one length scale is relevant. This characteristic length repre%

where F(x) is a time-independent scaling function, abglis

the fractal dimension of the colloidal clusters. This scaling

Yform is characteristic of the physical systems undergoing

V?)?]ase separatiofEqg. (2)], except that,q‘ml is considered a
haracteristic length in the system, and the spatial dimension

q(ﬁe'of the system is replaced Wy;, the fractal dimension of

he colloidal clusters.

¢  the tvoical d N di gregation in these experimental systems is irreversible and
Sents a measure ot the lypical domain Siz€ and INCreases Wik, 45 14 the formation of fractal aggregates, in contrast to the
time. A major feature of this description is that the pair cor-

: . phase separation processes in binary mixtures. The dynami-
relation fqnctmng(r,t) and the strupture factaB(q.t) de- cal evolution of such irreversible colloidal aggregation is
pend on time througiR(t) only, that is,

well understood in terms of the diffusion-limited-cluster-
cluster aggregatioiDLCA) model [10], where the initial
g(r,t) = G(r/R(1)) (1) colloidal monomers execute a Brownian motion until small
clusters are formed, and then the clusters themselves diffuse
and and aggregate to form even larger clusters. Thus, it is not
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clear why dynamical scaling with only a single length scalewell depth is increased further, one first obtains elongated
will be appropriate for colloidal aggregation. In fact, Huang, clusters and then fractal clustgmsith fractal dimensiorD;

Oh, and Sorense(HOS) [11] have argued that irreversible =1.4) form for deep enough well depths. Our simulations

colloidal aggregation is characterized twyo different length  also show how growth kinetics and resulting cluster size dis-
scales,namely the mean cluster radius of gyratigy(t) and tributions evolve from the irreversible limit to systems which

the mean nearest-neighbor cluster-cluster separation distanceme to equilibrium over the simulation time due to frag-

R.(t). Generally speaking, one can write mentation. Depletion-driven colloids, thus provide us with a
unigue opportunity to study dynamical scaling of time de-
Ry() ~t" and R,(t) ~t", (4) pendent structure factors in a colloidal system which pro-

ducesboth fractal and compact clusters as a function of the

wheren; andn; are the respective growth exponents. HOSstrength of the depletion potential. Such a study might pro-
have demonstrated that these two length scales grow witide important insight into the validity and applicability of
time with two different temporal exponent®;,#n,) and  dynamical scaling for various cluster morphologies. This is
thus, there is no dynamical scaling of the structure factor inthe motivation behind the current work.
an aggregating colloidal system. This is a direct consequence In this paper, we carry out a detailed simulation of the
of the fractal nature of the clusters with a fractal dimensionevolution of the structure factor in depletion-driven colloidal
smaller than the space dimensi@y <d). HOS have further  systems, for both shallow and deep quenches into the two-
concluded that fomonodisperse systertise total structure phase region. Our results show that true dynamical scaling is
factor S(q,t) may be written as the product of two different reached in a shallow quengtvhich produces compact clus-
structure factors, each with its own characteristic lengthsters after an initial transient regime. The scaling of the struc-
The first componentX.(q,t), is the cluster-cluster contribu- ture factor is confirmed by studying various length scales and
tion to the total structure factor, for which the cluster nearestby conclusively showing the existence of a single length
neighbor separationR,(t) is the associated characteristic scale in the system. In contrast, the apparent structure factor
length. The second compone®,(q,t), is the contribution scaling for a deep quenclwhich produces long-lived fractal
from particles inside a single cluster with the cluster radiusclusters is found to be only approximate. Two different
of gyrationRy as its characteristic length. HOS have claimedlength scales are found in the system which grow with two
that when clusters are compact, as in the case of phase sepbfferent power-law exponents with time. We further study
ration in a binary mixture, both characteristic lengths evolvethe origin of the peak in the structure factor in this case and
with the same temporal expondit,=n,). Thus, there would compare with theoretical predictions of HOS by taking clus-
be a single, effective length in the system and dynamicaler polydispersity into account.
scaling will be satisfied. But when clusters are fractals, dy-
namical scaling might be satisfied at most over a limited
window of time whenRy(t) = R,(t), but scaling as a general Il. NUMERICAL MODEL
principle must break down. . . . . .

Recent experimental and theoretical efforts show that col- We con5|de_r a two-d|men3|on(ﬂD)_ system_of linear size
loidal aggregation can be made reversible by tailoring thé- =296 containingN,,=13 107 colloidal particles of diam-
strength and range of interaction between colloidal particlesSt€r - This sets the monomer area fraction tofpe- 0.157.
As a result, colloidal solutions can display a rich series of/V€ also set=1 and thus measure all distances in unitgof

phase transitions between gas, liquid and solid ph‘,;lsngeriodic boundary_ conditions. are enforced to minimi;e WQII
[12,13. Manipulation of the interaction potential between effects. The equatlon§ of rnotlon_ for the colloidal particles in
colloidal particles can be achieved in several ways. For £Ur Brownian dynamics simulatiorj20], read as
charge stabilized colloidal solution, this can be done by the
addition of salt or surfactant solution of predetermined mo-
larities so that asecondary minimunil4] in the interaction
potential forms. Another way to control the interaction po-
;tﬁtnetzlctli)g;v[vle; qqc%ILofgéiﬁgrcheosn ;Sd;grgg;csosn?gg]euonwhergl" is the monomer friction 'coefficient arWi(t)', which .
(or a different sized colloid18]) in an otherwise stable col- _descnbes the ranc_iom fqrce acting on each coIImdaI_pf_;lrtche,
loidal solution. A major advantage of the latter systems igS & Gaussian white noise with zero mean and satisfies 2D
that the strength and range of the depletion interaction can béIctuation-dissipation relation¢W(t) -W;(t'))=4kgTI g o(t
easily controlled by varying the polymer concentration and-t’). Hydrodynamic interactions, including lubrication
the length of the added polymer chains. forces, are ignored in the simulation as they might not be of
In a recent Brownian dynamics simulatipt9] of a two-  predominant importance for a study of colloids interacting
dimensional model of depletion-driven colloids with through relatively weak(a few kgT) attractive potentials
Asakura-OosawgAO) potential, we have shown that a tran- [21].
sition from dispersed-phase to a coexistence of dispersed- The potentiall acting upon each colloidal particle has a
phase and solid-phase takes place as one increases the depthfold contribution: the two-body depletion potential of
of the depletion potential well. Near the transition point, for- Asakura-Oosaw#l5] (U,o) plus a repulsive hard-core-like
mation of clusters with a round shape is observed. As thénteraction(U;) given by the following expressions:

F,== VU, = T} + Wi(t), (5)
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3¢ 1, 21+3
Unolrij) _ 2_£<(1 +0%ry - §rﬁ T3 for ry <(1+¢) ©)
kgT
8 0 forry>(1+¢)
[
and for this deep well depth, the aggregates show hexagonal
closed-packed crystalline ordering at short length sdales
Undri) =" (7) the inset of Fig. (b)] while displaying ramified fractal nature
kgT ! at larger length scales. In the present wdkk,|=3.5 (corre-

. , . , sponding tog,=0.24]) (shallow quenchand|U,|=6.0(cor-
In EqQ. (6), ¢ is the size-ratio between a polymer chain and a > p
colloidal particle and is set equal #©=0.1 as in previous responding to4,=0.333 (deep quenchare selected as rep-

work [19,22. Thus the interaction is quite short ranged andresentatlve examples for the study of structure factor scaling

is cut off at a reduced distance of 1.dp is the reservoir in systems displaying compact and fractal clusters, respec-

polymer packing fraction which controls the strength of thet'vely' The phase diagram for the model considered here is

depletion interaction in the Asakura-Oosawa model. In thé<T‘°W” gccurately n three dlmen5|o[is4.,25_, bqt not in two
hard-core-like repulsive interaction given by E), we dimensions. For this reason, a quantitative identification _of
have sen=36. Exponents <36 are reportefi23] to lead to the qqench p0|nt§ chosen in our work on the 2D phase dia-
anomalies when a hard-core mimic is required in the potengram is not possible.
tial. The total pair-potentiall=Uxo+Up. passes through a A. General features of the structure factor
minimum value(U,,) which is related tapp. In what follows, -
we will characterize the strength of the potential in terms of T.he st.ructur.e facto&(q, ) for a system 0N, monomer
the absolute value of the minimum potential deptd,|, particles is defined as
instead of¢p.

We choosd=0.5, and a time stepat=0.005 in reduced 250
units of o(m/U,)Y? with massm=1. All simulations start
from a random homogeneous initial monomer conformation 200
and the results for the kinetics are averaged over 10 runs.
The monomer friction coefficient’ is related to the bare
diffusion constanDy asDy~KT/T". This expression for the
diffusion constant would be strictly valid if there were no o
interactions among the monomers. Nevertheless, this rela- 100 —
tionship suggests that the actual diffusion constant increases
asl' is decreased and this may result in a decrease in crystal 50
nucleation.

150

Ill. RESULTS AND DISCUSSION

Transition from a single dispersed-phase to a two-phase
co-existence is observed in our model when the minimum of
the depletion potential),, is deeper than a critical valug.. 200
The monomer area fraction in our simulation is chosen to be
f,~0.157, and two-phase coexistence is observed when 150
|Up|>U.~3.1%gT. When |U,| increases, homogeneous o
cluster nucleation is observed in the system and, at late
times, large round shaped clusters coexist with a sea of
monomers and some small aggregatEs. 1(a)]. As the
inset of Fig. 1a) shows, colloidal particles are arranged in a 50
hexagonal packing inside such clusters. By increaslihg
further, i.e., deep into the two-phase region, fractal clusters 0
are obtained at late timgéig. 1(b)]. Here, the interfacial
tension driven surface reorganization of monomers is almost
frozen and the cluster shape results mainly from random FIG. 1. Cluster morphology at=10000 for(a) shallow (|U,
cluster-cluster collisions as in a traditional diffusion-limited =3.5) and (b) deep(|U,|=6.0) quenches into the two-phase gas-
cluster-cluster aggregationDLCA) or reaction-limited solid region. Insets show hexagonal crystalline packing of the col-
cluster-cluster aggregatiofiRLCA) models. However, even loids inside the clusters.

100
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FIG. 2. Structure factors at several times fey shallow Uy, FIG. 3. Log-log plot of the structure factors at several times for
=3.5 and(b) deep quenched systers,,|=6. |Uy/=3.5 and|U=6.0. Dashed and dotted lines have been added
to guide the eye in the different regimes at lamgyealues. Dashed
N N lines account for the Porod regin®q)~q @Y (d=2), and the
S((j,t):z > exdiq - (f;—r))]. (8) dotted line accounts for the intermediate regime predicted for
i fractal clustersS(q) ~qPi(D;=1.4).

The pair-correlation functiog(r,t) can be obtained from the - 5, gtick in a way similar to the DLCA model without much
inverse Fourier transform &(q,t). In order to compute the jyiernal rearrangements. Therefore the main changes in the

above quantities we have discretized the system into @ gystem should occur at length scales larger than the former
X L grid of lattice points. We have then calculated the circu-c|yster size at that time. As the clusters aggregate and in-

larly averaged quantitieS(q,t) andg(r,t) by using standard  ¢rease their size, the overlap 8(g,t) is expected to start at
fast Fourier transfornFFT) routines. smallerg-values.

Figures 2a) and 2b) show time-dependent structure fac-  Figyre 3 shows log-log plots of the structure factors. Po-
tors for shallow(|U|=3.5 and deep quenchei);|=6.0, (o regime ofS(q) ~q @D is observed in the case bo,,|
respectively. The computed structure factors have been noe3 5 for largeg-values. For deep quenched systemuk,)|
malized by a factol?, whereL=256 is the linear size of g the fractal nature of the clustassith D;~ 1.4) exhibit a
system. In each case, we observe a peak in the structufer law regime at intermediatpvalues,S(q) ~ q~°r. With
factor. The position of the peak moves to smatjeralues as LU"“|:6’ we also observe a Porod’s regime for largeral-

time progresses, and the intensity of the peak increases. fbs, originating from the short-range crystalline packing of
contrast, at short length scal@argeg-valuey, the structure 1 monomers.

factor does not evolve much at late times. For this reason, the

scaling behavior of the structure factors must be examined

carefully over appropriatg-values. B. Scaling of the structure factor and various length scales
For the case ofU,|=6.0, the overlapping d8(q) data for in the system

large g-values at different times is clearly noticeable. This

almost frozen structure at short length scales is directly re-

lated to the way in which clusters aggregate after the initial The time evolution of the structure factor can be charac-

transient timg 19]. After an initial period, the small clusters terized by using the standard scaling ansatz,(Eg.Several

present in the system do not go through any large change ofuantities can be proposed as representative characteristic

shape or internal rearrangement due to the strong interactidangth scales of the system: the average cluster radius of

potential. Then, clusters start to collide among themselvegyration Ry(t), the cluster-cluster nearest-neighbor distance

1. Growth of compact clusters
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R.(t), the first zeroRy(t) of the connected parbf the pair- LT - | ' | ' | ' ]
correlation functiona measure commonly used in numerical 1al- OAT e
studies of phase separation in binary mixtui28]), and the - f *\‘} . et 121000 ]
inverse of the location of the peak of the structure factor, « ‘[ ! g n_"v N ‘fzggg ]
g, X(t). In order to distinguish the growing clusters from the S iR F ) Ja ¥ :;gooo —
background sea of monomers and small clusters, our calcu- £ dal ! L5 . . by = =9000] ]
lations of R,(t) and Ry(t) are carried out considering only 2 \M *-.,,’ i
clusters of size>4. g 06 L7 Vo, 5
Figures 4a)—4(c) show scaling plots for time-dependent = sl i3 ~' N, 5 "a® _
structure factors for shallow quenched syste(fiug,|=3.5 i \*,&"*---:_.'" 3 .
using Ry, Ry and (gm ™t as characteristic length scales, re- 02 __14:-".. “"*x%alse::ugw_
spectively. The three scaling plots show the same trend: after g——r—L . _——= i
an initial transient periodt;~10°-2x 10°, the data scale ’ '
nicely onto a master curve. As shown on Figc)4the shape @ 4RO
of the scaling function agrees quite well with the form pre-
dicted by Furukawd?27] for shallow quenches. o.1 = ' A' ' ' ]
Since scaling seems to work well at late times with vari- L (AL g
ous representations of the characteristic length scale, one 0.12— y g *-x =500 | —
might conclude that a single effective length scale must exist ¢ [ . e e
in the system for the growth of compact clusters. Still a = L N A =4000| |
detailed look at the evolution of various length scales is im- = 0.08 - 5 i r B
portant for a stringent test of the scaling behavior. We must E .68 | .,9" e — ]
add that we do not expect any deviation from scaling forthe 3 | PN J
evolution of compact clusters at late times, but characteriza- o4} ¥ ”\¥ *.h -
tion of the various length scales for this relatively simpler 000 R4 x\x-x'f%,, ]
system will provide insight into a more complicated case L oW "*M i
analyzed later. 0 - : : L - "g"*'
In order to make sure of the existence of a single, char- b aR (®
acteristic length scale in the system, we have plotted in Fig. o 0
5 the temporal evolution of severgdtios of various length =T T T —

scales mentioned previously. The behavior of these various
ratios is similar in all cases: after the initial transient period
t;, all the length scales in the system evolve in a similar way,
and are proportional to each other. In addition, Fig. 6 shows
individual temporal evolution oR,(t) andRy(t) in a log-log

plot where only clusters of sizee4 are considered. At late
times, both quantities are observed to evolve with the same
power law exponen{see Eq.(4)], with n;=n,=~0.25. A
power-law exponent oﬁ indicates that cluster growth at
these times is dominated by collisions among large clusters
and a corresponding reduction in the interfacial energy by

04

I
[

S(@OL” [q,OF

e
N

surface diffusion1].

Now we would like to understand the origin of the break-
down of scalingat earlier timesfor compact cluster growth.
To understand this we need to look at the temporal evolution
of Ry and R, carefully. From Fig. 6, we note that at very
early times,t<t;~300, Ry grows very slowly. In the next

()

FIG. 4. Scaling plots of the structure factor ft,|=3.5. Char-
acteristic lengths used ate) the mean cluster gyration radit,

(b) the first zero of the connected part of the correlation fundign
and (c) the inverse of the peak positian, of the structure factor.

stage, t>t;, cluster growth is very fast. This enhanced
growth rate lasts up to a second characteristic titpe
~1000 after which a power-law growth & with an expo-

nentn,;=0.25 is observed. Similarly, three different regimes

Filled symbols are used for times at which scaling holdgcjrthe
solid line is the scaling form predicted by Furukay2¥] for shal-
low quenches.

seem to exist for the growth of the nearest-neighbor clusteformed, and during this initiation period, the mean radius of

distanceR,,. Fort<t;, R,, actuallydecreasedefore reach-
ing a plateau. Fot; <t<t,, R,, grows very fast and then,
beyondt,, a power-law growth oR,, with an exponent,
=0.25 is observed. It is in this later time regintes t, (i.e.,
the initial transient time;, = t,) that the system shows scaling
behavior with a single, characteristic length scale.

gyration of clusters remains approximately constant. This
value ofR; is expected to be close to the mean critical nucle-
ation radius. During this period, the formation of nuclei leads
to a decrease of the mean distance between clusters. This is
clearly demonstrated in the observed decreade,pft this

early stage. Thus, the first regimhe& t; can be identified as a

The three regimes observed in Fig. 6 can be explained asucleation period in which nucleation of small aggregates

follows. During the first staget<<t;, cluster nuclei are

takes place. Given the different behavioiRyfandR,, in this
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- ' ' N ' ' ' ' ] early with the new size of the cluster. In contrast, a growth
LE BofRo of T (q'mj vr'g, JERE mechanism based on a net flux of single particleg and small
Eo. ° ;qm) R, e LY aggregates Fowards the large c!usters leads to a different tem-
b o R IR A S SRR poral evolution ofR,, andRy. This is due to the fact that the
. 2 distance between the center of masses of the large clusters
08| " N I N B R remains constant on average, but the radius of gyration
£ f O e oW A e grows due to the incorporation of new particles. Therefore,
= 06 e e L e, e - when both growth mechanisms are present in the system as
N e T e ] in the intermediate stagge<t<t,, dynamical scaling cannot
04 O o - be expected, even for compact clustersRgsandR, would
E O o000 00000 cns P 0000 P00 evolve differently in time. Only beyond a characteristic time
02[°°00000°900000000000°°0060005000050000000 t,, when the the net flux of small aggregates becomes zero,
a oo ] the evolution ofF\’.nn and Rg becomes proportional to each
o ——— = other and dynamical scaling of the structure factor holds.

s

t
2. Growth of fractal clusters

FIG. 5. A comparison of the temporal evolution of various ratios
of possible characteristic lengthR;, Ryn, Ro, and (qy) ™ for |Uy|
=3.5.

The scaling behavior of the structure factor for a deep
quench into the two-phase regiofty,,|=6.0, is showed in
Figs. 1a)-7(c) with Ry, Ry, andq;1l being used as measures
first stage, no scaling with a single length scale is possible©f the characteristic length scale of the system, respectively.

By plotting the total mass of the small clustef size For fractal aggregates, the spatial d|mengjan the scaling
<5) versus time, we find that the characteristic titpef the form [Eq. (2)] is replaced by _the fractal dimensidh; suc.h
second stage coincides with the time when the total mass fom.‘ has t_>een expressed in E8). .We note.that a scaling
the population of single particles and small aggregéites gscnpﬂon is meaningful only for intermediate valuesgof
clusters containing less than 5 partiglgsaches a steady SiNce at small length scalérgeq-valueg an almost frozen
state. This simulation result suggests that beyond thistjme nexagonally-packed crystal structure is observed and the

tructure factor does not evolve much for laig@alues at

the net flux of small aggregates becomes zero, i.e., the nu ) Fi At ) data for i di
ber of small aggregates entering large clusters equals tH@te timesisee Fig. 20)]. At late times, data for Intermediate
lues ofg seems to fall on a master curve indicating a

number of small aggregates leaving large clusters. Thus, fof? . ; . . .
t>1,, the predominant mechanism of cluster growth is due tcgynam|cal scaling behavior. Scaling seems to be particularly

_1 . .
collision among large clusters and a subsequent reduction old WgenEO’ andllqm grﬁ used as cgaract%nstlc _Ienglth_
the total interfacial energy as surface area minimizes. On thgc@/€S. Such a scaling behavior was observed previously in

other hand, at least two different mechanisms contribute t D aggregation of polystyrene colloifi8] and in numerical

the cluster growth in the intermediate regimect<t,. Itis ~ Simulations of the DLCA mode[28]. However, as we

easy to show that the mechanism of collision among |argé)resent shortly, a detailed study of the variou§ length scales
clusters leads to the same growth law exponentRigand in the system suggests that this apparent scaling of the struc-

R, if the clusters are assumed to be compact: the free spa&ére factor is not a signature of dynamical scaling in a strict

that surrounds the new cluster after the collision grows lin-S€NS€:. . )
g In Fig. 8 we show the evolution &&; andR,, versus time

T - T - - T t in a log-log plot. It is clear that these two length scales
sk 5 Toa (R el evolve differently in time with growth exponents,
] Iog“‘“j) g ° =0.52+0.03 andn,=0.36+0.03, defined in Eq4). How
0w a® | does one understand these values of the growth exponents?
. = As mentioned before and illustrated in RgE9], the in-
# s terfacial tension driven surface reorganization of monomers
CH DFD@““ il is almost frozen for deep quenches, and the cluster shape
® % ooomnga @ 8% o oo@““%_ results mainly from random cluster-cluster collisions as in a
- ° traditional DLCA model. Then, scaling arguments of Refs.
o5k ° _ [29,3Q for the DLCA model should be applicable here. For
& DLCA model with a Brownian coagulation kernel one finds
L od;sf’ _ that the homogeneity constait,of the aggregation kernel is
assmsae® 0O given by\=(d-3)/Ds in the dilute limit. The kinetic expo-
° 9 | . | nentz, which describes how the mean cluster s@#¢ scales
with time t, is in turn related to\:z=1/(1-\). In 3D, this
provides\=0 andz=1 as expected31]. In 2D, however,
FIG. 6. The temporal evolution oR, and R, for [U,/=3.5.  this leads toA=-1/D¢=-0.7 with D;=1.4 and hencez
After an initial transient period; ~ 10°-2x 10°, both length mea- =0.59 in the dilute limit. However, it is known that the ki-
sures evolve closely in time ast®2% A line of slope 0.25 has been netic exponent increases as the system gets dg2s® i.e.,
included to guide the eye. as thevolume fraction occupied by the clusterS, ificreases.

logl(l(Rg)’ log /R )

log,(1)
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FIG. 7. Scaling plots of the structure factor ftr,,|=6.0. Char-
acteristic lengths used ate) the mean cluster gyration radit,
(b) the first zero of the connected part of the correlation fundign

and (c) the inverse of the peak positian, of the structure factor.

Fractal dimension is set O¢=1.4.

For an intermediate value df(0.1<f <1), scaling argu-

ments yieldz=1.28 in 3D andz=0.67 in 2D. Simulations of
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FIG. 8. The temporal evolution d%, andR,, for |[U,|=6.0. For
deep quenched systems, the evolutionRgfand R, is different
with time. A solid line of slope 0.36 and a dashed line of slope 0.52
have been included to guide the eye.

DLCA simulations with a fair degree of cluster crowdedness
[32].

The kinetic exponent is related to the growth exponent
n, for the temporal evolution of the mean cluster radius of
gyration,R;. In the scaling description of DLCAR,=2/Dy.
Following Ref.[19] if we considerz=0.74 andD;=1.4 in
2D, we obtainn;=0.53 in excellent agreement with the ob-
servation of Fig. 8. On the other hanf,, scales as\;*"
whereN, is the number of clusters at tine Since the total
number of monomers is constant in the system, one can write
R,,~sY wheres is the mean cluster size at timeAs s
~ 1% one obtainRR,,~ t?%. Thus,n,=z/d=0.37 in 2D, again
in good agreement with the value obtained in Fig. 8.

Sinceny # ny, it is clear that a single characteristic length
does not exist in the system. This is a consequence of the
fractal nature of the clustefd1]. The breakdown of scaling
is further demonstrated in Fig. 9 by plottingtios of various
length scales in the system. As expect®y/R,, is not a
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FIG. 9. A comparison of the temporal evolution of various ratios

the AO model[19] yield a z-value rather similar to the 2D of possible characteristic lengthBy, Ryn, Ry, and (qy) ™2 for Uy
scaling result in the intermediate regime mentioned above6. Dashed and dotted lines are guides to the eye with slopes —0.25
and also to the kinetic exponent obtained in large-scale 2@nd 0.16, respectively.
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FIG. 10. The structure factor obtained fii|=6.0 at timet FIG. 11. The structure factor obtained fiy,|=3.5 at timet

=5000 is compared with HOS predictidB=S,:X Sz The inset  =5000 is compared with HOS predictid®F S.. X S, where only
depicts the behavior & andS;. separately in log-log plots. Inthe clusters larger tham>30 have been taken into account for the
inset two lines are plotted to guide the eye f: dashed line  calculation ofS, and Sy The inset depicts the behavior &, and
stands for a slope equal tdd+1)=-3, and solid line stands for a S separately. A dashed line with a slope equal td+1)=-3 is
slopel equal to Bs=-1.4. S flattens out at aq value around  shown to guide the ey&, flattens out at & value around 48",
4.5R .
tor with the productS,; X S, for deep quenches &t5000.

constant in time but rather grows with an exponent given byThe inset of Fig. 10 showS.. and S, separately in a log-log
n;—n,=0.16. Similarly, the ratidR,/ R, shows clear time de- plot. The cluster-cluster structure factfy, has been com-
pendence. It is interesting to note that baff/R,, and  puted by considering the centers of mass of the clusters as
Ry/R,, show weak dependence arThis indicates that, both scattering points. The single cluster structure fa@gqrhas
q;} and R, are closely related to one of the characteristicbeen obtained by computing the individual cluster structure
length scale of the system, nameRy,,. We will address this factors and averaging over all clusters. As it is shown in Fig.
point further in the next section. 10, the producB.;X S is a reasonably good approximation

Now that we clearly demonstrate the existence of mordor the total structure factor for largg-values. The inset of
than one length scale in the system, why does the structuféig. 10 shows the two power-law regimes ff a regime in
factor shows scaling as illustrated in Fig. 7? Note that, asvhich S(q) ~q°* and at largeg-values, a regime in which
shown in Fig. 8, the two length scal&y andR,, approach S.d@) ~q @D according to Porod’s law, originating from
each other as time progresses. Since their R{i6R, grows  the short-range crystalline order in the aggregagson the
weakly with timet, the relative difference between these two other hand, flattens out atcavalue around 48}, in good
length scales tend to decrease as time increases. This opeagreement with HOS.
up a window in time where these two length scales are of Unfortunately, the measured value §f.x S,. does not
similar magnitude, and scaling over this limited time intervalreproduce the observed peak in the total structure factor from
seems to satisfy. Dynamical scaling as a general principl¢ghe simulation. Instead, this product shows a monotonically
fails though for the growth of fractal clusters. decreasing function. One possible reason for this disagree-
ment atsmall gvalues is theolydispersityof the cluster size
distribution for deep quenches. In shallow quenched systems
(|U|=3.5, however, one finds large clusters with a relative

HOS has explained the presence of a peak in the structusamall degree of polydispersity if we do not take into account
factor by writing the total structure factor fononodisperse the very small aggregates and single colloidal particles that
systems as a combination of two structure factors: the singlesurround the large clusters. Therefofd,,|=3.5 quenches
cluster structure facto®,, which involves the cluster radius seem to be a more suitable system for testing HOS predic-
of gyration Ry as the characteristic length, and the cluster-tions applicable for monodisperse systems. Figure 11 shows
cluster structure factd®,., which involves the mean nearest- a comparison of the total structure factor fbr,|=3.5 att
neighbor distanc®,, as the characteristic length. In moder- =5000 with the producg.X S;. where only clusters larger
ately dense systems, this product causes a peak in thliban N>30 are taken into account. The inset of Fig. 11
structure factor but the peak location does not represent shows the behavior o&.. and S in this case. The dashed
true length scale of the system,® is thus not an indepen- line shows the predicted Porod regime &g in the case of
dent characteristic length scale, but rather can be expressedmpact clusterss,(q) ~ g~ @Y. S again flattens out at@
as a linear combination d®; and R, value around 4.5;%, in good agreement with HOS. In this

Figure 10 shows the comparison of the total structure facease, we observe that the prod&tXx S, reproduces the

C. Origin of the peak in the structure factor
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peak of the total structure factor. Thus it quite possible that For deep quenches, the magnitude of the interaction po-
the absence of the peak in the prod8gtx S,.for |U,|=6is  tential between colloidal particles is much larger than ther-
due to the polydispersity in the cluster size. mal energykgT. Thus, both rearrangement and fragmentation
In our simulations for both shallow and deep quenches9f clusters are practically frozen and the growing clusters are
the peak positiorq;l is found to be closely related to the fractals over long periods of .time_. Simulation results show
nearest neighbor cluster-cluster separafgn For compact that cluster growth in this regime is controlled by two char-
cluster growth, there is only one length scale in the systenfcteristic lengthsR,, and R, that evolve differently with
and thusg* can also be expressed in terms of the meariime. True dynamical scaling is thus not possible although an

radius of gyration of the growing clusters. For fractal cluster@PParent scaling of the structure factor is observed when

; ese two length scales are comparable in magnitude.
growth, there are two independent length scales but over thtg Another important result of this work is to understand the

simulation time gy, is found to be proportional & shape of the total structure factor. In this respect, our results
are compared with the predictions of HOS. HOS predict that
IV. CONCLUDING REMARKS the total structure factor for a monodisperse system can be
] ) ) ) described as a product of the cluster-cluster and the
An important result of this work is the demonstration that averaged-single-cluster structure factors, each with its own
aggregating colloids exhibit a true structure factor scalingcharacteristic length. In the HOS formulation, the peak in the
only when the growing clusters are compact. This can beotal structure factor then arises due to the overlap of these
achieved for shallow quenches into the two-phase region of awo contributions. Simulation results show that this descrip-
depletion-driven colloid. For such quenches, true scaling oction works for monodisperse systems but seems to break
curs after an initial transient time. This transient period cov-down for polydisperse cluster size distributions.
ers nucleation of clusters and growth mainly by incorporat- Much of the simulation results presented here are ame-
ing monomers and small clusters in the growing nuclei. Innable to direct experimental tests. We hope that our work
this regime R,, andRy grow differently with time and scal- would stimulate further experimental and theoretical studies
ing does not work. After the transient period, the predomi-towards the full understanding of the aggregation processes
nant mechanism of cluster growth is collision among largen widely different physical situations.
clusters and the subsequent surface reorganization of clusters
to reduce interfacial tension. This process leads to a similar ACKNOWLEDGMENTS
temporal evolution oR,, andR,, and a single length scale J.J.C. and T.S. acknowledge financial support from the
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